3 research outputs found

    Estimação de parâmetros em tempo real através de filtro de Kalman com janela robusta suavizante e estimadores de estados não lineares

    Get PDF
    Os estimadores de estado, ou observadores, são técnicas que reconstroem os estados de um modelo dinâmico a partir das medidas de entrada e saída do sistema. Eles podem ser baseados na teoria probabilística (proposto por Kalman), que considera ruídos no modelo ou na teoria determinística (introduzida por Luenberger) sem a presença de ruídos. Embora, na sua gênese, o controle “moderno” tenha motivado o surgimento dessas técnicas em 1960, os estimadores de estado são hoje em dia aplicados também em reconciliação de dados, analisadores virtuais, estimação de parâmetros, gêmeos digitais e detecção de falhas. Por isso, esta tese aborda um estudo sobre filtros de Kalman e suas aplicações focado, principalmente, no uso de janela robusta suavizante. As principais contribuições do trabalho são: (1) revisão bibliográfica histórica dos estimadores de estado, abordando suas principais interligações e características, incluindo uma motivação prática de suas utilizações; (2) avaliação de cinco metodologias de filtro de Kalman (estendido - EKF, estendido com restrições - CEKF, formulação curta do estendido com restrições – CEKF2, estendido com restrições e suavizado - CEKFS, sem rastro - UKF, e de cubatura – CKF implementadas a dados industriais, mostrando a sua capacidade de aplicação em casos reais, sendo eles, na produção de petróleo offshore e em uma rede de trocadores de calor; (3) proposta de técnica de estimação de bias em casos em que o estimador não linear retorna resultados insatisfatórios; (4) avaliação de três métodos de estimadores de estado com horizonte móvel para estimação simultânea de estados e parâmetros (estimação do horizonte móvel - MHE, com horizonte retrocedido - RNK, e robusto com horizonte retrocedido - RRNK); e (5) apresentação de formulação robusta e simples para problema de otimização do RNK e RRNK utilizando programação quadrática. De modo geral os filtros de Kalman não-lineares (UKF e CKF) retornam melhores resultados para os dados industriais quando o modelo está bem ajustado. No entanto, eles possuem elevado custo computacional e desempenho insatisfatório para modelos mal ajustados, enquanto os filtros estendidos não apresentam essas desvantagens. Por isso, utilizando técnica simples da estimação de bias como uma variável através de técnica de estado aumentado, o filtro de Kalman sem rastro e de cubatura se mostraram mais acurados, mesmo em um cenário de ajuste inadequado do modelo. Para a estimação simultânea de estados e parâmetros, o RRNK exibiu as suas vantagens na redução de erros de modelagem, retornando parâmetros mais suavizados. Nesse sentido, a reformulação dos problemas de otimização do RNK e RRNK em uma formulação de programação quadrática simples e robusta obteve um custo computacional nove vezes menor que o MHE.State estimators, or observers, are techniques that reconstruct the states of a dynamical model from the input and output measures of the system. They can be based on the probabilistic theory (proposed by Kalman), which considers noise in the model, or on the deterministic theory (introduced by Luenberger) without the presence of noise. Although in its genesis, “modern” control motivated the emergence of these techniques in 1960, state estimators are nowadays also applied in data reconciliation, virtual analyzers, parameter estimation, digital twins, and fault detection. For this reason, this thesis addresses a study on Kalman filters and their applications, focused mainly on the use of a robust softening window. The main contributions of the work are: (1) historical bibliographic review of state estimators, addressing their main interconnections and characteristics, including a practical motivation for their uses; (2) evaluation of five Kalman filter methodologies (extended – EKF, constrained extended – CEKF, short formulation of the constrained extended – CEKF2, constrained extended and smoother – CEKFS, unscented – UKF, cubature – CKF) implemented to industrial data, showing their ability to be applied in real cases, namely in offshore oil production and in a heat exchanger network; (3) proposal of bias estimation technique in cases where the nonlinear estimator returns unsatisfactory results; (4) evaluation of three methods of state estimators with moving window for simultaneous state and parameter estimation (moving horizon horizon – MHE, receding nonlinear Kalman filter – RNK, and robust receding nonlinear Kalman filter – RRNK), and (5) presentation of robust and simple formulation for RNK and RRNK optimization problem using quadratic programming. In general, non-linear Kalman filters (UKF and CKF) return better results for industrial data when the model is well adjusted. However, they have high computational costs and poor performance for poorly adjusted models, while extended filters do not present these disadvantages. Therefore, using a simple bias estimation technique as a variable using an increased state technique, the unscented and cubature Kalman filter proved to be more accurate, even in a scenario of inadequate model adjustment. For the simultaneous state and parameter estimation, the RRNK showed its advantages in reducing modeling errors, returning more smoothed parameters. In this sense, the RNK and RRNK optimization problems’ reformulation in a robust and straightforwards quadratic programming formulation obtained a computational cost nine times smaller than the MHE

    Estimação de parâmetros em modelos com ciclo limite

    No full text
    Sistemas não-lineares podem apresentar um comportamento periódico, no qual o ponto de equilíbrio no diagrama de fase, quando se plota uma variável de estado versus outra variável de estado, é substituído por uma órbita circular, denominada ciclo limite. A estimação de parâmetros desses sistemas não é uma tarefa simples, devido a não convexidade do problema de otimização. A fim de estimar parâmetros em tais modelos, este trabalho propõe um método que quantifica o comportamento oscilatório do sistema em função do valor dos parâmetros, adicionando essa informação, na forma de uma penalidade à função objetivo do problema de otimização associado reduzindo a não convexidade do problema, conduzindo o modelo a produzir o comportamento oscilatório. Para avaliar a metodologia, primeiramente foi estudado o modelo de Jöbses et al. (1986), onde foi comparada metodologia proposta com abordagens disponíveis na literatura. A metodologia proposta também foi aplicada a modelos relativos à produção de petróleo offshore, onde foram considerados: o modelo simplificado de Meglio et al. (2009), com três estados dinâmicos, representando apenas a região do sistema pipeline/riser, o modelo estendido de Diehl et al. (2017), com seis estados dinâmicos, representando a dinâmica das regiões anular/tubing e pipeline/riser e, por fim, a aplicação real, onde foram estimados os parâmetros desse último modelo com os dados de planta de produção offshore de uma plataforma de petróleo nacional. Os resultados mostraram que o método proposto foi capaz de garantir o comportamento oscilatório, diferentemente das outras abordagens, reduzindo a não convexidade do problema de estimação e forçando o comportamento dinâmico do sistema a produzir o ciclo limite, mesmo quando a otimização fosse inicializada a partir de valores fora da região de ciclo limite.Non-linear systems may present a periodic behavior, where the phase diagram equilibrium point, obtained by plotting a state variable versus another state variable, is replaced by a circular orbit called limit cycle. The parameters estimation in these systems is not an easy task due to the non-convexity of the optimization problem. In order to estimate parameters in these models, this work proposes a method that quantifies the system oscillatory behavior in function of the parameters values, adding this information in the form of a penality to the objective function of the associated optimization problem, reducing the non-convexity and leading the model to produce an oscillatory behavior. Firstly, to evaluate the methodology, it was studied the Jöbses et al. (1986) model, where the proposed methodology was compared to the approaches available in the literature. The methodology was also applied to models related to offshore oil production, where it was considered: the simplified Meglio et al. (2009) model, with three dynamical states, representing only the pipeline/riser region, the Diehl et al. (2017) extended model, with six dynamical states, representing the dynamics of the anular/tubing and pipeline/riser region and, lastly, to a real application, where the parameters were estimated with the Diehl et al. (2017) model using real data obtained from a national oil plataform. The results showed that the proposed approach was able to ensure the oscillatory behavior, differently of other approaches, reducing the non-convexity of the estimation problem and forcing the dynamical behavior of the system to produce the limit cycle, even when the optimization was initializated with values outside the region of the limit cycle

    Estimação de parâmetros em modelos com ciclo limite

    No full text
    Sistemas não-lineares podem apresentar um comportamento periódico, no qual o ponto de equilíbrio no diagrama de fase, quando se plota uma variável de estado versus outra variável de estado, é substituído por uma órbita circular, denominada ciclo limite. A estimação de parâmetros desses sistemas não é uma tarefa simples, devido a não convexidade do problema de otimização. A fim de estimar parâmetros em tais modelos, este trabalho propõe um método que quantifica o comportamento oscilatório do sistema em função do valor dos parâmetros, adicionando essa informação, na forma de uma penalidade à função objetivo do problema de otimização associado reduzindo a não convexidade do problema, conduzindo o modelo a produzir o comportamento oscilatório. Para avaliar a metodologia, primeiramente foi estudado o modelo de Jöbses et al. (1986), onde foi comparada metodologia proposta com abordagens disponíveis na literatura. A metodologia proposta também foi aplicada a modelos relativos à produção de petróleo offshore, onde foram considerados: o modelo simplificado de Meglio et al. (2009), com três estados dinâmicos, representando apenas a região do sistema pipeline/riser, o modelo estendido de Diehl et al. (2017), com seis estados dinâmicos, representando a dinâmica das regiões anular/tubing e pipeline/riser e, por fim, a aplicação real, onde foram estimados os parâmetros desse último modelo com os dados de planta de produção offshore de uma plataforma de petróleo nacional. Os resultados mostraram que o método proposto foi capaz de garantir o comportamento oscilatório, diferentemente das outras abordagens, reduzindo a não convexidade do problema de estimação e forçando o comportamento dinâmico do sistema a produzir o ciclo limite, mesmo quando a otimização fosse inicializada a partir de valores fora da região de ciclo limite.Non-linear systems may present a periodic behavior, where the phase diagram equilibrium point, obtained by plotting a state variable versus another state variable, is replaced by a circular orbit called limit cycle. The parameters estimation in these systems is not an easy task due to the non-convexity of the optimization problem. In order to estimate parameters in these models, this work proposes a method that quantifies the system oscillatory behavior in function of the parameters values, adding this information in the form of a penality to the objective function of the associated optimization problem, reducing the non-convexity and leading the model to produce an oscillatory behavior. Firstly, to evaluate the methodology, it was studied the Jöbses et al. (1986) model, where the proposed methodology was compared to the approaches available in the literature. The methodology was also applied to models related to offshore oil production, where it was considered: the simplified Meglio et al. (2009) model, with three dynamical states, representing only the pipeline/riser region, the Diehl et al. (2017) extended model, with six dynamical states, representing the dynamics of the anular/tubing and pipeline/riser region and, lastly, to a real application, where the parameters were estimated with the Diehl et al. (2017) model using real data obtained from a national oil plataform. The results showed that the proposed approach was able to ensure the oscillatory behavior, differently of other approaches, reducing the non-convexity of the estimation problem and forcing the dynamical behavior of the system to produce the limit cycle, even when the optimization was initializated with values outside the region of the limit cycle
    corecore